

Documentation for automated cell cycle gating (cell_cycle_gating)

The Deep Dye Drop assay provides detailed readouts on the cell cycle in addition to the live/dead counts.
Cells are treated with Hoechst (to stain nuclei) and LIVE/DEAD Red (LDR, to stain dead cells) dyes in multi-well plates.
In addition, cells can be treated with EdU (to stain S-phase cells) and an antibody for phospho-histone H3 (to stain M-phase cells).
Live cells are assigned to a phase of the cell cycle based on their DNA content, and EdU and pH3 intensities. Subsequently, cells are
imaged at the single-cell level. The cell_cycle_gating script described in this documentation takes the resultant single cell imaging
data as input and automatically classifies cells into live or dead and further classifies live cells into G1, G2, S, or M phase of the cell cycle.

	License and funding

	Installation

	Getting started
	Working with data generated from Columbus

	Working with data generated from IXM

	Merging metadata information to output

	Not really Deep Dye Drop

	Gating corrections using control wells

	Additional plotting functions

	Run cell cycle gating (automated)

	Manual gating

	Cell cycle phases (based on DNA and EdU staining)

	Dead cell filter (based on DNA and LDR staining)

	pH3 filter

	Peak identification

	Plotting functions

Indices and tables

	Index

	Module Index

	Search Page

License and funding

Deep Dye Drop’s automated gating package is currenlty available under the MIT license [https://opensource.org/licenses/MIT]
.The package was developed with funding from U54 grant HL127365, “The Library of Integrated Network-Based Cellular Signatures” under the NIH Common Fund program, and NCI U54 grant CA225088 for the Harvard Medical School (HMS) Center for Cancer Systems Pharmacology (CCSP).

Installation

Deep Dye Drop’s automated gating script requires Python 3.

In order to install, cd into a local folder of your chocice using the command line. As shown below, clone the repository to the local folder and use pip to install the cell cycle gating scripts.

git clone https://github.com/datarail/DrugResponse.git
pip install -e DrugResponse/python

Getting started

Working with data generated from Columbus

	Object level data for a given well is saved as a .txt file. The data for all wells in a given plate is saved in a folder. The name of the folder typically takes the form abcdef[123]. The abcdef prefix in the folder name should correspond to the barcode assigned to the plate.

	cd into the directory that contains the object level data folders.

	Start a Jupyter notebook or Ipython session and execute the lines of code below:

from cell_cycle_gating import run_cell_cycle_gating as rccg

obj_folder = 'abcdef[123]' # Name of object level folder

Map user defined channel names to standarized names required by the script
ndict = {'Nuclei Selected - EdUINT': 'edu',
 'Nuclei Selected - DNAcontent': 'dna',
 'Nuclei Selected - LDRTXT SER Spot 8 px' : 'ldr',
 'Nuclei Selected - pH3INT': 'ph3'}

Run gating script
dfs = rccg.run(obj_folder, ndict)

	The dataframe dfs returns well-level summary of number of live/dead cells and fraction of cells in each phase of the cell cycle.

	The script saves a pdf showing the gating on each DNA v EDU scatter plot for review. By default the pdf file uses the name of the folder as the file name i.e summary_abcdef[123].pdf

	The dataframe df is also saved as a .csv file with the same name as the object level folder i.e summary_abdef[123].csv

Working with data generated from IXM

	The standard column names generated in Metaexpress differ from the Operetta. Please update ndict as below and add an additional argument to rccg.run(). Further, the entire dataset for a given plate is saved as a single .txt file instead of seperate files per well in a folder. See below:

from cell_cycle_gating import run_cell_cycle_gating as rccg

obj_file = 'filename.txt' # Name of object level file

Map user defined channel names to standarized names required by the script
ndict = {'Well Name' : 'well',
 'Cell: EdUrawINT (DDD-bckgrnd)' : 'edu',
 'Cell: LDRrawINT (DDD-bckgrnd)' : 'ldr',
 'Cell: DNAcontent (DDD-bckgrnd)' : 'dna'}

Run gating script
dfs = rccg.run(obj_file, ndict, system='ixm', header=7)

Merging metadata information to output

If you have well level metadata that maps each well to sample conditions, then the above code block can be modified as follows:

Load metadata file
import pandas as pd
dfm = pd.read_csv('metadata.csv')

Run gating script, this time passing dfm as an additional argument.
dfs = rccg.run(obj, ndict, dfm)

	Note that the metadata file should contain the following header columns:

	
	barcode, well, cell_line, agent, concentration.

	Fields in the barcode column should match the prefix in the folder name. i.e abdcdef

Not really Deep Dye Drop

By default, the gating code expects that you have all 4 channels i.e DNA, EdU, LDR, pH3. However, if you do not have LDR and/or pH3 channels, modify the main line of the code as shown below:

dfs = rccg.run(obj, ndict, dfm,
 ph3_channel=False, # If no pH3 channel
 ldr_channel=False # If no LDR channel
)

Gating corrections using control wells

Automated gating does not always work well, in which case you can apply the automated gating from control wells for a given cell line across corresponding treatment wells. In the first line of code below, by setting control_based_gating=True, automated gating is run only on the control plates. The results are saved in .csv and .pdf files with the prefix control_summary_. The function also returns a second dataframe dfg that contains information on the gates in the control wells. In the second line, the script is run a second time with the arguement control_gates=dfg so that errors in automated gating are corrected based on control gating.

dfs, dfg = rccg.run(obj, ndict, dfm,
 control_based_gating=True)
dfs2 = rccg.run(obj, ndict, dfm, control_gates=dfg)

If you want to manually adjust gates across all wells, you can provide a list of fudge factors i.e. by what magnitude and in which direction you want to change the DNA gates. There are 4 gates you can adjust; G1-left, G1-right, G2-left, and G2-right. For instance, if you want to move G2-left (3rd gate) furrther left by a magnitude of 0.05, set fudge_gates=[0, 0, -0.05, 0]. If you want to move G2-right (4th gate) by a magnitue of 0.2 to the right, set fudge_gates=[0, 0, 0, 0.2]. In the code example below, we have applied gates from the control but also decided to move the 3rd and 4th gates to the left by 0.05 and 0.1 units in log(DNA) scale.

dfs2 = rccg.run(obj, ndict, dfm, control_gates=dfg,
 fudge_gates=[0, 0, -0.05, -0.1])

Additional plotting functions

	To plot cell cycle fractions:

import pandas as pd
from cell_cycle_gating import plot_fractions

dfs = pd.read_csv('summary_abcdef[123].csv')
plot_fractions(dfs)

Run cell cycle gating (automated)

Manual gating

Cell cycle phases (based on DNA and EdU staining)

Dead cell filter (based on DNA and LDR staining)

pH3 filter

	
cell_cycle_gating.ph3_filter.compute_log_ph3(ph3, x_ph3=None)

	Compute log of pH3 intensities

	Parameters:

	
	ph3 (1d array) – ph3 intensities across all cells in a well

	x_ph3 (1d array) – uniformly distributed 1d grid based on expected range of pH3 intensities

	Returns:

	log_ph3 – log pf pH3 intensities across all cells in a well

	Return type:

	1d array

	
cell_cycle_gating.ph3_filter.evaluate_Mphase(log_ph3, ph3_cutoff, cell_identity, ax=None)

	Reassigns membership of each cell based on M phase identified by pH3

	Parameters:

	
	log_ph3 (1d array) – log of ph3 intensities across all cells in a well

	ph3_cutoff (1d array) – pH3 gating on kernel density minima

	cell_identity (1d array) – membership of each cell in cell cycle phase (1=G1, 2=S, 3=G2)

	ax (subplot object) – relative positional reference of subplot in master summary plot

	Returns:

	fractions – keys are cell cycle phases (G1, G2, S, M) and
values are fractions of cells in each phase

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
cell_cycle_gating.ph3_filter.get_ph3_gates(ph3, cell_identity, x_ph3=None, ph3_cutoff=None)

	Gating based on pH3 intensities

	Parameters:

	
	ph3 (1d array) – ph3 intensities across all cells in a well

	cell_identitity (1d array) – membership of each cell in cell cycle phase (1=G1, 2=S, 3=G2)

	x_ph3 (1d array) – uniformly distributed 1d grid based on expected range of pH3 intensities

	ph3_cutoff (Optional[numpy float]) – User defined pH3 gating

	Returns:

	
	f_ph3 (1d array) – kernel density estimate of pH3 distribution

	ph3_cutoff (numpy float) – pH3 gating on kernel density minima

	ph3_lims (list of floats) – bounds on pH3 intensities used as x_lim for plots

	
cell_cycle_gating.ph3_filter.plot_summary(ph3, cell_identity, x_ph3=None, ph3_cutoff=None, well=None)

	Summary plot of pH3 based gating

	Parameters:

	
	ph3 (1d array) – ph3 intensities across all cells in a well

	cell_identity (1d array) – membership of each cell in cell cycle phase (1=G1, 2=S, 3=G2)

	x_ph3 (1d array) – uniformly distributed 1d grid based on expected range of pH3 intensities

	ph3_cutoff (1d array) – (optional) USER defined pH3 gating

	well (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of well on 96/384 well plate

	Returns:

	fractions – keys are cell cycle phases (G1, G2, S, M) and
values are fractions of cells in each phase

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Peak identification

	
cell_cycle_gating.findpeaks.findpeaks(signal, npeaks=None, thresh=0.25)

	Returns the amplitude , location and half-prominence width of peaks
from the input signal

	Parameters:

	
	signal (list [https://docs.python.org/3/library/stdtypes.html#list]) –

	npeaks (int [https://docs.python.org/3/library/functions.html#int]) – number of peaks, locations and width returned sorted
from highest to lowes amplitude peaks

	thresh (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – threshold below which secondary peaks will not be reported. Default is 0.25

	Returns:

	
	peak_amp (array of float) – amplitude of peaks

	peak_loc (array of float) – location of peaks

	width (array of float) – list of widths at half-prominence

	
cell_cycle_gating.findpeaks.get_prominence_reference_level(signal, peak, peak_loc)

	Returns the amplitude and location of the lower reference
level of a peaks prominence. Note that prominence is the
the length from the reference level upto the peak

	Parameters:

	
	signal (1D-array) –

	peak (float [https://docs.python.org/3/library/functions.html#float]) – amplitude of peak whose prominece is to be computed

	peak_loc (float [https://docs.python.org/3/library/functions.html#float]) – location on X-axis of peak whose prominence is to be computed

	Returns:

	
	reference_loc (float) – location of X-axis of peak whose prominence is to be computed.
Should equal peak_loc

	reference_level (float) – lower reference level of peak prominence.

	
cell_cycle_gating.findpeaks.get_width_half_prominence(signal, peak, peak_loc)

	

Plotting functions

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cell_cycle_gating	

 	
 	
 cell_cycle_gating.findpeaks	

 	
 	
 cell_cycle_gating.ph3_filter	

Index

 C
 | E
 | F
 | G
 | P

C

 	
 	cell_cycle_gating.findpeaks (module)

 	
 	cell_cycle_gating.ph3_filter (module)

 	compute_log_ph3() (in module cell_cycle_gating.ph3_filter)

E

 	
 	evaluate_Mphase() (in module cell_cycle_gating.ph3_filter)

F

 	
 	findpeaks() (in module cell_cycle_gating.findpeaks)

G

 	
 	get_ph3_gates() (in module cell_cycle_gating.ph3_filter)

 	
 	get_prominence_reference_level() (in module cell_cycle_gating.findpeaks)

 	get_width_half_prominence() (in module cell_cycle_gating.findpeaks)

P

 	
 	plot_summary() (in module cell_cycle_gating.ph3_filter)

 nav.xhtml

 Table of Contents

 		
 Documentation for automated cell cycle gating (cell_cycle_gating)

 		
 License and funding

 		
 Installation

 		
 Getting started

 		
 Working with data generated from Columbus

 		
 Working with data generated from IXM

 		
 Merging metadata information to output

 		
 Not really Deep Dye Drop

 		
 Gating corrections using control wells

 		
 Additional plotting functions

 		
 Run cell cycle gating (automated)

 		
 Manual gating

 		
 Cell cycle phases (based on DNA and EdU staining)

 		
 Dead cell filter (based on DNA and LDR staining)

 		
 pH3 filter

 		
 Peak identification

 		
 Plotting functions

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

