
Deep Dye Drop gating Documentation

Kartik Subramanian, Marc Hafner

Aug 17, 2023





Contents

1 License and funding 3

2 Installation 5

3 Getting started 7
3.1 Working with data generated from Columbus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Working with data generated from IXM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Merging metadata information to output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Not really Deep Dye Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Gating corrections using control wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6 Additional plotting functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Run cell cycle gating (automated) 11

5 Manual gating 13

6 Cell cycle phases (based on DNA and EdU staining) 15

7 Dead cell filter (based on DNA and LDR staining) 17

8 pH3 filter 19

9 Peak identification 21

10 Plotting functions 23

11 Indices and tables 25

Python Module Index 27

Index 29

i



ii



Deep Dye Drop gating Documentation

The Deep Dye Drop assay provides detailed readouts on the cell cycle in addition to the live/dead counts. Cells are
treated with Hoechst (to stain nuclei) and LIVE/DEAD Red (LDR, to stain dead cells) dyes in multi-well plates. In
addition, cells can be treated with EdU (to stain S-phase cells) and an antibody for phospho-histone H3 (to stain
M-phase cells). Live cells are assigned to a phase of the cell cycle based on their DNA content, and EdU and pH3
intensities. Subsequently, cells are imaged at the single-cell level. The cell_cycle_gating script described in this
documentation takes the resultant single cell imaging data as input and automatically classifies cells into live or dead
and further classifies live cells into G1, G2, S, or M phase of the cell cycle.

Contents 1



Deep Dye Drop gating Documentation

2 Contents



CHAPTER 1

License and funding

Deep Dye Drop’s automated gating package is currenlty available under the MIT license .The package was developed
with funding from U54 grant HL127365, “The Library of Integrated Network-Based Cellular Signatures” under the
NIH Common Fund program, and NCI U54 grant CA225088 for the Harvard Medical School (HMS) Center for
Cancer Systems Pharmacology (CCSP).

3

https://opensource.org/licenses/MIT


Deep Dye Drop gating Documentation

4 Chapter 1. License and funding



CHAPTER 2

Installation

Deep Dye Drop’s automated gating script requires Python 3.

In order to install, cd into a local folder of your chocice using the command line. As shown below, clone the repository
to the local folder and use pip to install the cell cycle gating scripts.

git clone https://github.com/datarail/DrugResponse.git
pip install -e DrugResponse/python

5



Deep Dye Drop gating Documentation

6 Chapter 2. Installation



CHAPTER 3

Getting started

3.1 Working with data generated from Columbus

• Object level data for a given well is saved as a .txt file. The data for all wells in a given plate is saved in a
folder. The name of the folder typically takes the form abcdef[123]. The abcdef prefix in the folder name
should correspond to the barcode assigned to the plate.

• cd into the directory that contains the object level data folders.

• Start a Jupyter notebook or Ipython session and execute the lines of code below:

from cell_cycle_gating import run_cell_cycle_gating as rccg

obj_folder = 'abcdef[123]' # Name of object level folder

# Map user defined channel names to standarized names required by the script
ndict = {'Nuclei Selected - EdUINT': 'edu',

'Nuclei Selected - DNAcontent': 'dna',
'Nuclei Selected - LDRTXT SER Spot 8 px' : 'ldr',
'Nuclei Selected - pH3INT': 'ph3'}

# Run gating script
dfs = rccg.run(obj_folder, ndict)

• The dataframe dfs returns well-level summary of number of live/dead cells and fraction of cells in each phase
of the cell cycle.

• The script saves a pdf showing the gating on each DNA v EDU scatter plot for review. By default the pdf file
uses the name of the folder as the file name i.e summary_abcdef[123].pdf

• The dataframe df is also saved as a .csv file with the same name as the object level folder i.e
summary_abdef[123].csv

7



Deep Dye Drop gating Documentation

3.2 Working with data generated from IXM

• The standard column names generated in Metaexpress differ from the Operetta. Please update ndict as below
and add an additional argument to rccg.run(). Further, the entire dataset for a given plate is saved as a single
.txt file instead of seperate files per well in a folder. See below:

from cell_cycle_gating import run_cell_cycle_gating as rccg

obj_file = 'filename.txt' # Name of object level file

# Map user defined channel names to standarized names required by the script
ndict = {'Well Name' : 'well',

'Cell: EdUrawINT (DDD-bckgrnd)' : 'edu',
'Cell: LDRrawINT (DDD-bckgrnd)' : 'ldr',
'Cell: DNAcontent (DDD-bckgrnd)' : 'dna'}

# Run gating script
dfs = rccg.run(obj_file, ndict, system='ixm', header=7)

3.3 Merging metadata information to output

If you have well level metadata that maps each well to sample conditions, then the above code block can be modified
as follows:

# Load metadata file
import pandas as pd
dfm = pd.read_csv('metadata.csv')

# Run gating script, this time passing dfm as an additional argument.
dfs = rccg.run(obj, ndict, dfm)

Note that the metadata file should contain the following header columns:

• barcode, well, cell_line, agent, concentration.

• Fields in the barcode column should match the prefix in the folder name. i.e abdcdef

3.4 Not really Deep Dye Drop

By default, the gating code expects that you have all 4 channels i.e DNA, EdU, LDR, pH3. However, if you do not
have LDR and/or pH3 channels, modify the main line of the code as shown below:

dfs = rccg.run(obj, ndict, dfm,
ph3_channel=False, # If no pH3 channel
ldr_channel=False # If no LDR channel

)

8 Chapter 3. Getting started



Deep Dye Drop gating Documentation

3.5 Gating corrections using control wells

Automated gating does not always work well, in which case you can apply the automated gating from con-
trol wells for a given cell line across corresponding treatment wells. In the first line of code below, by setting
control_based_gating=True, automated gating is run only on the control plates. The results are saved in
.csv and .pdf files with the prefix control_summary_. The function also returns a second dataframe dfg that
contains information on the gates in the control wells. In the second line, the script is run a second time with the
arguement control_gates=dfg so that errors in automated gating are corrected based on control gating.

dfs, dfg = rccg.run(obj, ndict, dfm,
control_based_gating=True)

dfs2 = rccg.run(obj, ndict, dfm, control_gates=dfg)

If you want to manually adjust gates across all wells, you can provide a list of fudge factors i.e. by what magnitude
and in which direction you want to change the DNA gates. There are 4 gates you can adjust; G1-left, G1-right,
G2-left, and G2-right. For instance, if you want to move G2-left (3rd gate) furrther left by a magnitude of 0.05, set
fudge_gates=[0, 0, -0.05, 0]. If you want to move G2-right (4th gate) by a magnitue of 0.2 to the right,
set fudge_gates=[0, 0, 0, 0.2]. In the code example below, we have applied gates from the control but
also decided to move the 3rd and 4th gates to the left by 0.05 and 0.1 units in log(DNA) scale.

dfs2 = rccg.run(obj, ndict, dfm, control_gates=dfg,
fudge_gates=[0, 0, -0.05, -0.1])

3.6 Additional plotting functions

• To plot cell cycle fractions:

import pandas as pd
from cell_cycle_gating import plot_fractions

dfs = pd.read_csv('summary_abcdef[123].csv')
plot_fractions(dfs)

3.5. Gating corrections using control wells 9



Deep Dye Drop gating Documentation

10 Chapter 3. Getting started



CHAPTER 4

Run cell cycle gating (automated)

11



Deep Dye Drop gating Documentation

12 Chapter 4. Run cell cycle gating (automated)



CHAPTER 5

Manual gating

13



Deep Dye Drop gating Documentation

14 Chapter 5. Manual gating



CHAPTER 6

Cell cycle phases (based on DNA and EdU staining)

15



Deep Dye Drop gating Documentation

16 Chapter 6. Cell cycle phases (based on DNA and EdU staining)



CHAPTER 7

Dead cell filter (based on DNA and LDR staining)

17



Deep Dye Drop gating Documentation

18 Chapter 7. Dead cell filter (based on DNA and LDR staining)



CHAPTER 8

pH3 filter

cell_cycle_gating.ph3_filter.compute_log_ph3(ph3, x_ph3=None)
Compute log of pH3 intensities

Parameters

• ph3 (1d array) – ph3 intensities across all cells in a well

• x_ph3 (1d array) – uniformly distributed 1d grid based on expected range of pH3 in-
tensities

Returns log_ph3 – log pf pH3 intensities across all cells in a well

Return type 1d array

cell_cycle_gating.ph3_filter.evaluate_Mphase(log_ph3, ph3_cutoff, cell_identity,
ax=None)

Reassigns membership of each cell based on M phase identified by pH3

Parameters

• log_ph3 (1d array) – log of ph3 intensities across all cells in a well

• ph3_cutoff (1d array) – pH3 gating on kernel density minima

• cell_identity (1d array) – membership of each cell in cell cycle phase (1=G1,
2=S, 3=G2)

• ax (subplot object) – relative positional reference of subplot in master summary plot

Returns fractions – keys are cell cycle phases (G1, G2, S, M) and values are fractions of cells in
each phase

Return type dict

cell_cycle_gating.ph3_filter.get_ph3_gates(ph3, cell_identity, x_ph3=None,
ph3_cutoff=None)

Gating based on pH3 intensities

Parameters

• ph3 (1d array) – ph3 intensities across all cells in a well

19

https://docs.python.org/3/library/stdtypes.html#dict


Deep Dye Drop gating Documentation

• cell_identitity (1d array) – membership of each cell in cell cycle phase (1=G1,
2=S, 3=G2)

• x_ph3 (1d array) – uniformly distributed 1d grid based on expected range of pH3 in-
tensities

• ph3_cutoff (Optional[numpy float]) – User defined pH3 gating

Returns

• f_ph3 (1d array) – kernel density estimate of pH3 distribution

• ph3_cutoff (numpy float) – pH3 gating on kernel density minima

• ph3_lims (list of floats) – bounds on pH3 intensities used as x_lim for plots

cell_cycle_gating.ph3_filter.plot_summary(ph3, cell_identity, x_ph3=None,
ph3_cutoff=None, well=None)

Summary plot of pH3 based gating

Parameters

• ph3 (1d array) – ph3 intensities across all cells in a well

• cell_identity (1d array) – membership of each cell in cell cycle phase (1=G1,
2=S, 3=G2)

• x_ph3 (1d array) – uniformly distributed 1d grid based on expected range of pH3 in-
tensities

• ph3_cutoff (1d array) – (optional) USER defined pH3 gating

• well (str) – name of well on 96/384 well plate

Returns fractions – keys are cell cycle phases (G1, G2, S, M) and values are fractions of cells in
each phase

Return type dict

20 Chapter 8. pH3 filter

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict


CHAPTER 9

Peak identification

cell_cycle_gating.findpeaks.findpeaks(signal, npeaks=None, thresh=0.25)
Returns the amplitude , location and half-prominence width of peaks from the input signal

Parameters

• signal (list) –

• npeaks (int) – number of peaks, locations and width returned sorted from highest to
lowes amplitude peaks

• thresh (Optional[float]) – threshold below which secondary peaks will not be re-
ported. Default is 0.25

Returns

• peak_amp (array of float) – amplitude of peaks

• peak_loc (array of float) – location of peaks

• width (array of float) – list of widths at half-prominence

cell_cycle_gating.findpeaks.get_prominence_reference_level(signal, peak,
peak_loc)

Returns the amplitude and location of the lower reference level of a peaks prominence. Note that prominence is
the the length from the reference level upto the peak

Parameters

• signal (1D-array) –

• peak (float) – amplitude of peak whose prominece is to be computed

• peak_loc (float) – location on X-axis of peak whose prominence is to be computed

Returns

• reference_loc (float) – location of X-axis of peak whose prominence is to be computed.
Should equal peak_loc

• reference_level (float) – lower reference level of peak prominence.

21

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


Deep Dye Drop gating Documentation

cell_cycle_gating.findpeaks.get_width_half_prominence(signal, peak, peak_loc)

22 Chapter 9. Peak identification



CHAPTER 10

Plotting functions

23



Deep Dye Drop gating Documentation

24 Chapter 10. Plotting functions



CHAPTER 11

Indices and tables

• genindex

• modindex

• search

25



Deep Dye Drop gating Documentation

26 Chapter 11. Indices and tables



Python Module Index

c
cell_cycle_gating.findpeaks, 21
cell_cycle_gating.ph3_filter, 19

27



Deep Dye Drop gating Documentation

28 Python Module Index



Index

C
cell_cycle_gating.findpeaks (module), 21
cell_cycle_gating.ph3_filter (module), 19
compute_log_ph3() (in module

cell_cycle_gating.ph3_filter), 19

E
evaluate_Mphase() (in module

cell_cycle_gating.ph3_filter), 19

F
findpeaks() (in module cell_cycle_gating.findpeaks),

21

G
get_ph3_gates() (in module

cell_cycle_gating.ph3_filter), 19
get_prominence_reference_level() (in mod-

ule cell_cycle_gating.findpeaks), 21
get_width_half_prominence() (in module

cell_cycle_gating.findpeaks), 21

P
plot_summary() (in module

cell_cycle_gating.ph3_filter), 20

29


	License and funding
	Installation
	Getting started
	Working with data generated from Columbus
	Working with data generated from IXM
	Merging metadata information to output
	Not really Deep Dye Drop
	Gating corrections using control wells
	Additional plotting functions

	Run cell cycle gating (automated)
	Manual gating
	Cell cycle phases (based on DNA and EdU staining)
	Dead cell filter (based on DNA and LDR staining)
	pH3 filter
	Peak identification
	Plotting functions
	Indices and tables
	Python Module Index
	Index

